
Formal Languages

A formal language is a set of words. This set can be either finite or infinite. If
a formal language is finite, it can be specified by listing all words that belong to
it. This is not possible if it is infinite. How can an infinite formal language be de-
fined? A formalism is required. The type of formalism depends on the type of the
language. Unfortunately no formalism is known that would enable one to specify
any language. But for special sets of languages there are diverse elegant formalisms.

The sets of formal languages form a hierarchy. This hierarchy is named after the
American linguist Noam Chomsky. Higher languages are proper subsets of lower
languages in this hierarchy. There are the following relations:

Regular languages
⊂ Context-free languages
⊂ Context-sensitive languages
⊂ Recursive languages
⊂ Recursively enumerable languages
⊂ General languages,

Recursive langagues
⊂ Co-recursively enumerable languages
⊂ General languages.

All finite languages are regular. Moreover, languages that allow an unlimited rep-
etition of parts of a word belong to the set of regular languages as well. Regular
languages can be defined by regular expressions, that is strings which in addition
to literals (characters that belong to the word) may also contain parentheses and
two peculiar symbols. One of these symbols is usually expressed as the plus sign,
the other as the multiplication sign. The plus sign signifies that the preceding part
of the word may be omitted. Due to this, the regular expression ab+c stands for
the two words ac and abc. The plus sign is usually only applied to the previous
literals, except in case several literals were embraced by a parenthesis, in which case
the plus sign relates to the part of the word between the parentheses. The regu-
lar expression a(bc)+d for example stands for the two words ad and abcd. With
the multiplication sign it is quite similar; its meaning is that the marked part of
the word can be repeated an unlimited number of times. The regular expression
a(bc)*d creates an infinite set of words, containing the words ad, abcd, abcbcd,
abcbcbcd, abcbcbcbcd and infinitely many more.

Some readers might raise the question how this is related to computer science;
well, actually formal languages are a central concept of theoretical computer sci-
ence. Each formal language corresponds to a decision problem: Does a particular
word belong to the formal language or not? The belonging to a certain set of formal
languages can be decided by a computational model, a theoretical formalism that
mimicks the behaviour of a computer. In general any decision problem that can

1



be solved by a computer can also be solved by a Turing machine and vice versa.
However, a Turing machine is not able to decide any conceivable language - it is
only suitable for recursively enumerable languages. There is no known formalism
for more general languages. I will talk about Turing machines later on, but now let
us come back to regular languages.

Regular languages can be modelled as finite automata. An automaton is a set
of states with defined transitions. There is exactly one starting state and at least
one finishing (accepting) state. Any automaton begins at the starting state and
reads the first literal. If there is a transition from the current state to another state
with this transition accepting the literal, the transition to the new state can be
made. Otherwise execution stops. A word is considered an element of the given
formal language if and only if all literals have been accepted in the given order
and a finishing state has been reached this way. Note that there may be more
than one transition from the current state that accepts a given literal. If there are
several different transitions accepting the same input, such an automaton is called
non-deterministic. If such an automaton is used to check if a word is in a given
language, all possible paths of execution must be considered; it is enough if a single
path leads to an accepting state. The other type of automata is called deterministic;
with deterministic finite automata, it is sufficient to execute them once to solve a
decision problem. As the intelligent reader might suspect, deterministic automata
are usually more complex than non-deterministic ones; they consist of more states.
Is it possible to construct a deterministic automaton for any decision problem that
can be solved by a non-deterministic automaton? Yes, it is. Since a deterministic
automaton is actually a special type of a non-deterministic automaton, the oppo-
site relation applies as well. Deterministic and non-deterministic automata have the
same strength of expression. In many cases, however, it is easier to construct a
non-deterministic finite automaton that accepts a given language.

The next level in the hierarchy is occupied by context-free languages. These lan-
guages can be specified by context-free grammars. There are various notations
for these, one of the better known ones being the Extended Backus-Naur-Form
(EBNF). It has the following syntax:

rule → literal* rule* literal*

Again the multiplication sign means that the preceding element can be repeated
an unlimited time, including zero times. This enables one to define rules such as

A → abc,

which means that any occurence of the rule A may be replaced by the string abc,
but also rules such as

A → a B de,
B → B c,

2



which mean that B may be replaced by an arbitrary number of literals c and A
by literal a, followed by rule B and literals de. What distinguishes this from regular
languages is that several possibilities can be defined for each rule. It holds:

A → B|C

is equal to

A → B,
A → C.

So it is possible to choose an option, and this makes it possible to describe lan-
guages that cannot be defined by regular expressions. For instance, the context-free
grammar

A → a A b|ε,

where ε signifies the empty word, enables one to form the following words: ε,
ab, aabb, aaabbb etc. There is no regular expression for this language. For this
reason this is not a regular, but a context-free language.

Context-free languages can be defined by automata as well. For this purpose push-
down automata are used. These work with a stack, that is a data structure that
enables one to push anything onto the top of the stack any time and to derive
(“pop”) the upmost element of the stack, by which this element is removed from
the stack, but not to directly access any other element of the stack. Stacks are also
called LIFO memories (last in, first out). A pushdown automaton uses the topmost
value of the stack as an additional criterion to decide whether a particular transition
is allowed. Moreover, each transition may push a new element onto the top of the
stack. With such an automaton it is possible to decide whether a given word is an
element of the context-free language which is represented by that automaton.

It is easy to show that such an automaton is able to model a context-free lan-
guage: If the right-hand side of a rule contains only literal, the stack is not needed.
If there are references to other rules on the right-hand side, the stack can be used to
save where the automaton should continue after processing the rule that is referred
to. For instance, if the rule A contains a reference to the rule B, the automaton
processes the word following rule A until the reference is reached. Then it saves on
the stack where it must continue as soon as the processing of the rule B is finished,
and goes on by processing the rule B. Once that is finished, the automaton looks
up on the stack to see where it must continue. After finishing the processing of the
rule A it realizes that the stack is empty and ends at an accepting state.

What is missing is the proof that such a pushdown automaton is only able to
process context-free languages and not also languages that appear in the next level

3



of the Chomsky hierarchy. Of course it is possible to show that a pushdown automa-
ton is not able to process context-sensitive languages which are not context-free at
the same time. Context-sensitive languages can be defined by grammars in which
literals may also appear on the left-hand side, for example

a A b → b C d.

I leave the proof to the readers as an exercise. A hint: It is related to the se-
quential processing of the input (one literal after the other in the very order they
appear in the input word). Why may this be a problem with context-sensitive lan-
guages? Would it, in theory, be possible using pushdown automata to jump back
to literals that have already been processed? Why does this not suffice to define
context-sensitive languages by means of pushdown automata?

A formalism that allows to jump back to already processed literals while saving
the additional pieces of information needed to process context-sensitive languages
ia Turing machines. Turing machines are far more powerful than automata. They
can have different states, process the input from left to right as well as in the other
direction, and overwrite the input. A Turing machine is represented by states and
transitions just like an automaton, exactly one state being the starting state and
at least one state being a finishing (accepting) state. The input word is accepted
when such a finishing state is reached. Which transitions are possible depends on
the current state on the one hand and on the literal located at the current position
of the input/output head on the other. Each transition not only defines the follow-
ing state but also the value the current input data element is overwritten with and
the direction where the input/output head will move next.

Turing machines allow to describe more general languages than just context-sensitive
ones. Turing machines which have to either accept or reject an input but must not
enter an infinite loop are also called Turing deciders. Turing deciders represent re-
cursive (also called decidable) languages. If you allow a Turing machine to enter an
infinite loop if the word does not belong to the language but demand from it that it
accepts the word in any other case, the set of languages that can be represented is
called the set of recursively enumerable or semi-decidable languages. By contrast,
if the Turing machine must always reject the word if it is not in the language but
may either accept or enter an infinite loop otherwise, these languages are called
co-recursively enumerable; and the set of recursive languages is the intersection of
recursively enumerable and co-recursively enumerable languages.

Claus D. Volko, cdvolko@gmail.com

4


